Joint Sparse Sub-Pixel Mapping Model with Endmember Variability for Remotely Sensed Imagery
نویسندگان
چکیده
Spectral unmixing and sub-pixel mapping have been used to estimate the proportion and spatial distribution of the different land-cover classes in mixed pixels at a sub-pixel scale. In the past decades, several algorithms were proposed in both categories; however, these two techniques are generally regarded as independent procedures, with most sub-pixel mapping methods using abundance maps generated by spectral unmixing techniques. It should be noted that the utilized abundance map has a strong impact on the performance of the subsequent sub-pixel mapping process. Recently, we built a novel sub-pixel mapping model in combination with the linear spectral mixture model. Therefore, a joint sub-pixel mapping model was established that connects an original (coarser resolution) remotely sensed image with the final sub-pixel result directly. However, this approach focuses on incorporating the spectral information contained in the original image without addressing the spectral endmember variability resulting from variable illumination and environmental conditions. To address this important issue, in this paper we designed a new joint sparse sub-pixel mapping method under the assumption that various representative spectra for each endmember are known a priori and available in a library. In addition, the total variation (TV) regularization was also adopted to exploit the spatial information. The proposed approach was experimentally evaluated using both synthetic and real hyperspectral images, and the obtained results demonstrate that the method can achieve better results by considering the impact of endmember variability when compared with other sub-pixel mapping methods.
منابع مشابه
Generation of remotely sensed reference data using low altitude, high spatial resolution hyperspectral imagery
Exploitation of imaging spectroscopy (hyperspectral) data using classification and spectral unmixing algorithms is a major research area in remote sensing, with reference data required to assess algorithm performance. However, we are limited by our inability to generate rapid, accurate, and consistent reference data, thus making quantitative algorithm analysis difficult. As a result, many inves...
متن کاملFPGA Design and Implementation of a Fast Pixel Purity Index Algorithm for Endmember Extraction in Hyperspectral Imagery
Hyperspectral imagery is a class of image data which is used in many scientific areas, most notably, medical imaging and remote sensing. It is characterized by a wealth of spatial and spectral information. Over the last years, many algorithms have been developed with the purpose of finding “spectral endmembers,” which are assumed to be pure signatures in remotely sensed hyperspectral data sets....
متن کاملSupervised Sub-Pixel Mapping for Change Detection from Remotely Sensed Images with Different Resolutions
Due to the relatively low temporal resolutions of high spatial resolution (HR) remotely sensed images, land-cover change detection (LCCD) may have to use multi-temporal images with different resolutions. The low spatial resolution (LR) images often have high temporal repetition rates, but they contain a large number of mixed pixels, which may seriously limit their capability in change detection...
متن کاملA Comparative Study of SVM and RF Methods for Classification of Alteration Zones Using Remotely Sensed Data
Identification and mapping of the significant alterations are the main objectives of the exploration geochemical surveys. The field study is time-consuming and costly to produce the classified maps. Therefore, the processing of remotely sensed data, which provide timely and multi-band (multi-layer) data, can be substituted for the field study. In this study, the ASTER imagery is used for altera...
متن کاملNew Algorithm for Sub-pixel Boundary Mapping
Remotely sensed images often contain a combination of both pure and mixed pixels. Analysis and classification of remotely sensed imagery used to provide information on the spatial pattern of land cover feature suffer from the problem of class mixing within pixels. Therefore, how to get spatial pattern and boundaries information of endmembers in sub-pixel scale has been receiving increasing atte...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Remote Sensing
دوره 9 شماره
صفحات -
تاریخ انتشار 2017